近年來,人工智慧(AI)的崛起引起了廣泛的討論和擔憂,很多人擔心AI會造成失業率飆升,而有些樂觀的朋友則戲稱「只要電費貴過饅頭,AI就永遠不能完全代替人」。
雖然這是句玩笑話,但背後則是實實在在的AI能耗問題,越來越多的人擔憂高能耗將成為制約AI發展的瓶頸。
就在不久前,技術創業者、前谷歌工程師凱爾·科比特(Kyle Corbitt)在社交媒體X上表示,微軟已經遇到了這方面的難題。
AI到底有多費電?
科比特稱,訓練GPT-6的微軟工程師們正忙著搭建IB網路(InfiniBand),把分布在不同地區的GPU連接起來。這項工作很困難,但他們別無選擇,因為如果把超過10萬塊H100晶片部署在同一個地區,電網就會崩潰。

來源:X@corbtt為什麼這些晶片集中起來會導致電網崩潰的後果呢?讓我們來簡單算一筆賬。
英偉達網站上公布的數據顯示,每塊H100晶片的峰值功率為700W,10萬塊H100峰值功耗最高可達7000萬W。而X留言區有能源行業從業者指出,10萬塊晶片的總能耗將相當於一座小型太陽能或風能發電廠的全部輸出。
除此之外,還要考慮這麼多晶片的配套設施的能耗,包括伺服器和冷卻設備。這麼多耗電設施,集中在一小片區域,給電網帶來的壓力可想而知。
AI耗電,冰山一角
關於AI能耗問題,《紐約客》的報道一度引起廣泛關注。報道估算,ChatGPT每日耗電量或超過50萬千瓦時。(參見:ChatGPT日耗電超50萬度,卡死AI發展的竟然是能源?)實際上,目前AI耗電量雖然看上去是個天文數字,但仍然遠遠不及加密貨幣和傳統的數據中心。
而微軟工程師遇到的難題也表明,制約AI發展的不僅是技術本身的能耗,還有配套基礎設施的能耗,以及電網的承載力。
國際能源署(IEA)發布的一份報告顯示,2022年全球數據中心、人工智慧和加密貨幣的耗電量達到460 TWh,占全球能耗的近2%。IEA預測,在最糟糕的情況下,到2026年這些領域的用電量將達1000 TWh,與整個日本的用電量相當。
但是,報告同時顯示,目前直接投入AI研發的能耗遠低於數據中心和加密貨幣。英偉達在AI伺服器市場中占據約95%的份額,2023年供應了約10萬塊晶片,每年耗電量約為7.3 TWh。
但是在2022年,加密貨幣的能耗為110 TWh,與整個荷蘭的用電量相當。
圖註:2022年與2026年,傳統數據中心、加密貨幣、AI數據中心的能耗估計值(柱狀圖從下往上依次展示)。可見,目前AI耗電量遠低於數據中心和加密貨幣。圖片來源:IEA
冷卻能耗,不容忽視
數據中心的能效通常用能效比(Power Usage Effectiveness)評估,即消耗的所有能源與IT負載消耗的能源的比值。能效比越接近於1,表明數據中心浪費的能源越少。
數據中心標準組織Uptime Institute發布的報告顯示,2020年全球大型數據中心的平均能效比約為1.59。也就是說,數據中心的IT設備每消耗1度電,其配套設備就消耗0.59度電。
數據中心的額外能耗中,絕大部分應用於冷卻系統。一項調查研究顯示,冷卻系統消耗的能量可達數據中心總能耗的40%。近些年,隨著晶片更新換代,單台設備的功率增大,數據中心的功率密度(即單位面積耗電量)不斷提升,對散熱提出了更高的要求。
但與此同時,通過改進數據中心設計,就能大幅減少能量的浪費。因為冷卻系統、結構設計等各方面的差異,不同數據中心的能效比差異很大。
Uptime Institute報告顯示,歐洲國家已經把能效比降到了1.46,而在亞太地區仍有超過十分之一的數據中心能效比超過2.19。
世界各國正在採取措施,敦促數據中心實現節能減排的目標。其中,歐盟要求大型數據中心設立餘熱回收設備;美國政府注資研發更高能效的半導體;中國政府也出台措施,要求數據中心從2025年起能效比不高於1.3,並將可再生能源使用比例逐年上調,到2032年達到100%。
科技公司用電,節流難開源更難
隨著加密貨幣和AI的發展,各大科技公司的數據中心規模不斷擴大。據國際能源署(IEA)統計,在2022年美國擁有2700座數據中心,消耗了全國用電量的4%,並預測這一比例到2026年將達到6%。
隨著美國東西海岸用地越發緊張,數據中心逐步向愛荷華州、俄亥俄州等中部地區轉移,但這些二線地區原有的產業並不發達,電力供應可能無法滿足需求。
一些技術公司嘗試擺脫電網的束縛,直接從小型核電站購買電能,但這種用電方式和新建核電站都要面臨複雜的行政流程。
微軟嘗試使用AI輔助完成申請,而谷歌使用AI進行運算任務調度,以提高電網運行效率,降低企業碳排放。至於可控核聚變何時投入應用,目前仍然是未知數。
氣候變暖,雪上加霜
AI的研發需要穩定而強大的電網支持,但隨著極端天氣頻發,許多地區的電網正在變得更加脆弱。氣候變暖會導致更加頻繁的極端天氣事件,不僅造成用電需求激增,加重電網負擔,還會直接衝擊電網設施。
IEA報告指出,受乾旱、降雨不足和提早融雪的影響,2023年全球水力發電占比下跌到三十年來的最低值,不足40%。天然氣往往被視為向可再生能源轉型過程中的一座橋樑,但它在冬季極端天氣下並不穩定。
2021年,寒潮襲擊美國德克薩斯州,導致大面積斷電,部分居民家中斷電超過70小時。這次災難的一個主要原因就是天然氣管道冰凍,造成天然氣發電廠停擺。
北美電力可靠性委員會(North American Electric Reliability Council,簡稱NERC)預測,在2024-2028年,美國、加拿大有超過300萬人口面臨越來越高的斷電風險。為保障能源安全,同時實現節能減排,許多國家也將核電站視為一種過渡措施。
在2023年12月舉辦的聯合國應對氣候變化委員會第28次峰會(COP 28)上,22個國家簽署聯合聲明,承諾到2050年將核能發電能力提升到2020年水平的3倍。
與此同時,隨著中國、印度等國大力推進核電建設,IEA預測到2025年,全球核電發電量將達到歷史新高。
IEA報告指出:「在變化的氣候模式面前,提高能源多樣化、提升電網跨區域調度能力和採取更加抗衝擊的發電方式將變得越發重要。」 保障電網基礎設施,不僅關係到AI技術的發展,更是關乎國計民生。